Siemens researchers working in collaboration with specialists from Infineon have developed a receiver that converts Internet data from fiber-optic cables into electrical signals at breathtaking speed. At present, highly complex and expensive modules are needed for receiving such signals. In the future, components such as the Infineon chip, which is being used for the first time, will play an essential role in increasing the performance of communications networks at reasonable cost.


The Internet is becoming increasingly popular, with the global user community growing at an annual rate of twenty percent. In 2005 over a billion people were already clicking regularly into the World Wide Web. In order to prevent the dense data traffic from bringing telecommunications networks to the point of collapse in the future, operators will have to make their data routes more efficient, while minimizing the cost of doing so. Achieving this will require new cost-effective, high-tech modules.

One such module, which now exists as a prototype, is the result of the cooperative project "Demonstator for 80-Gbit/s direct receivers with electrical time division demultiplex" funded by the German Federal Ministry of Research and carried out by Siemens Corporate Technology (CT) and the Siemens Communications Group (Com) in Munich together with Infineon Technologies. This is a data receiver that processes a data volume of 107 gigabits per second on a tiny electronic chip. That is a record-breaking performance, because up until now considerably more complex and far more expensive modules have been necessary. 107 gigabits corresponds approximately to the volume of the data held on two DVDs.

Data usually travels along the high speed routes of the Internet in the form of a light signal. Before the data can be converted back into electrical signals at the destination point it must first be split optically into several signals with a lower data rate, each of which then has to be converted individually into electrical signals with photodiodes. This is necessary to enable the downstream electronic systems to process the data. However, the optical equipment needed for this splitting process is expensive. Moreover, several optoelectronic converters are also needed, which drives up the costs enormously.
http://www.physorg.com/news66656850.html
Make sure to read the rest.

Some high tech goodies we get to look forward to in the coming years!!! Bring on Commander Data! Honestly, I want this chip like 5 years ago... where were they when I was downloading from napster at a whopping 5Kb/sec and burning at 1X speed LOL I cannot wait to see what is on the horizon!